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Mean-squared displacements �MSDs� of colloidal fluids of hard spheres are analyzed in terms of a random
walk, an analysis which assumes that the process of structural relaxation among the particles can be described
in terms of thermally driven memoryless encounters. For the colloidal fluid in thermodynamic equilibrium the
magnitude of the stretching of the MSD is able to be reconciled by a bias in the walk. This description fails for
the under-cooled colloidal fluid.
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I. INTRODUCTION

The usual approach to the dynamics of a suspension as-
sumes that the suspending fluid is in thermodynamic equilib-
rium and provides a white noise thermal background to the
particles �1–3�. The closure commonly applied holds that
delta-correlated thermal forces dissipate by friction forces
that depend linearly on the particles’ velocities. These as-
sumptions underpin the basic Langevin and Smoluchowski
theories. The shortcoming of this approach is that it ignores
the particles’ response to the delayed momentum currents, or
hydrodynamic modes, in the suspending fluid. While these
have been accounted for in various theoretical treatments of
the motion of independent suspended particles �4�, rigorous
inclusion of hydrodynamic coupling among them is far from
trivial �1,5�. Consequently, considerations of the dynamics of
concentrated suspensions tend to be predicated on a Markov-
ian approximation: the notion that, on the time scale of de-
tectable movement of the particles, memory of momentum
and energy exchanges between the particles and the suspend-
ing fluid is lost �2,3�. Accordingly, over time intervals long
compared with molecular collisions but short compared with
particle encounters the particles are presumed to diffuse. The
so-called “short-time” diffusion coefficient is introduced
�2,6� to account for the, presumed instantaneously propagat-
ing, hydrodynamic modes.

The observed stretching of time correlation functions
�2,7,8�, for one, is indicative of non-Markovian processes in
concentrated suspensions. Where the particles themselves are
hard spheres, the special case considered here, any interac-
tion among them can occur only by momentum exchanges
transmitted by the suspending fluid. Hence any deviations
from Markovian behavior are necessarily due to the memory
of these momentum exchanges.

The question addressed in this paper is the following:
Having statistically decoupled the particles’ momentum and
configuration spaces, as entailed in the Markovian approxi-
mation, to what extent is it possible to describe a suspen-
sion’s dynamical properties? Specifically, in this analysis we
consider the mean-squared displacement �MSD� of particles
with hard-sphere-like interactions suspended in a liquid. The
MSD for such suspensions has been obtained by dynamic
light scattering �DLS� �8,9� and optical microscopy �10� and,

while there is general agreement between the results of the
two approaches, we will consider the data obtained by DLS
since it spans the larger dynamical window. The most strik-
ing feature of the MSD is the increasingly pronounced
stretching when the volume fraction of spheres is increased
�8,9�.

Having made the Markovian approximation, the usual
way to describe this stretching theoretically is by �re-� intro-
ducing memory into configuration space. And there are nu-
merous models for doing this �2,3,11�. It is not, however, the
purpose of this paper to analyze or evaluate such models.
Instead, having rendered encounters between the particles
uncorrelated by the Markovian approximation, a second
Markovian, random walk is constructed, in the spirit of el-
ementary kinetic theory of gases, from steps equal to the
average gap between the particle surfaces. The bias of this
second walk is adjusted so that its MSD passes through the
point of maximum stretching of the experimental MSD. The
merits of this lowest order statistical description of the MSDs
are considered for the colloidal fluid in thermodynamic equi-
librium as well as the nonequilibrium, or undercooled, col-
loidal fluid.

II. METHODS AND THEORY

The properties of the suspensions and dynamic light scat-
tering �DLS� procedures are detailed in earlier papers �8,12�.
For the benefit of self-containment of this paper the impor-
tant aspects are summarized here.

The colloidal fluids comprise a mixture of polymer and
silica particles, stabilized against coagulation by thin oligo-
meric surface coatings. Particles are suspended in cis-
decalin. The equilibrium phase behavior and several other
properties are consistent with hard-sphere interactions �13�.
Freezing, melting, and glass transition volume fractions are
�f=0.494, �m�0.535, and �g�0.565, respectively. The
colloidal fluid in thermodynamic equilibrium ����f� and
the nonequilibrium, or undercooled case ��f����g� are
both considered.

The mixture of polymer and silica particles, the suspend-
ing liquid, and ambient temperature are selected �8� so that
scattering of laser light by particle number density fluctua-

PHYSICAL REVIEW E 73, 011401 �2006�

1539-3755/2006/73�1�/011401�7�/$23.00 ©2006 The American Physical Society011401-1

http://dx.doi.org/10.1103/PhysRevE.73.011401


tions is suppressed and only the self intermediate scattering
function �ISF�,

Fs�q,�� = �exp�iq · �r����� , �1�

is measured. Here q is the wave vector and �r��� is the
particle displacement in the time interval �. For a rotationally
invariant ensemble of particles Eq. �1� can be expanded in
terms of the even cumulants �14�;

ln Fs�q,�� = − ��r2����
q2

6
+

1

2
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��r4���� − ��r2����2	

�
q2

6
�2

+ ¯ . �2�

The low wave-vector limit �q→0�,

Fs
�G��q,�� = exp�− ��r2����q2/6� , �3�

exposes the Gaussian component of the tagged particle den-
sity fluctuations. The quantity in the square brackets in the
second term of Eq. �2� expresses the lowest order deviation
of the ISF, or particle displacement distribution �PDD�, from
Gaussian.

A typical mean-squared displacement �MSD�, ��r2����,
obtained by DLS is shown in Fig. 1. In this and subsequent
figures and discussion, distances are expressed in units of the
particle radius, R=200 nm, and delay times in units of the
Brownian characteristic interval, �b=R2 / �6D0�, where D0 is
the diffusion coefficient of a freely diffusing particle. In
these dimensionless units the MSD of a freely diffusing par-
ticle equals the delay time.

Two points, ��c ,Rc
2� and ��m,Rm

2 �, relevant to the analyses
that follow are indicated. The first of these is determined
from the average gap between particle surfaces,

Rc = 
�R

�
�1/3

− 1, �4�

where �R=0.64 is the volume fraction at random close pack-
ing. Given Rc the average time interval, �c, between particle
encounters is simply read from the MSD, ��r2��c��=Rc

2. The
second point is that where stretching of the ISF is greatest,
i.e., where the logarithmic derivative,

���� = d log��r2����/d log � , �5�

is a minimum. The root-mean-squared �rms� distance, Rm,
and the interval �m may be considered as features character-
istic of structural relaxation or, at least, characteristic of the
movement of particles engaged in this process.

Other relevant quantities, the short and long time self-
diffusion coefficients, Ds and Dl, are obtained from the short
and long time limits of Fs�q ,�� by procedures described in
Refs. �8,12�. These coefficients are expressed here in units of
D0.

From the perspective of the Markovian approximation the
movement of suspended particles during delay times ���c
are random walks characterized by the coefficient Ds. Con-
sequently, encounters between the particles are uncorrelated.
In view of this we explore the extent to which the movement
of a particle over longer delay times ����c� can be described
by a �second� random walk of � /�c steps of length Rc. The
MSD of a particle so engaged is �15�

�x2���� 	 
 �

�c
�Rc

2. �6�

If the random walker is to represent the movement of a sus-
pended particle in an amorphous ensemble several factors
must be taken into account. First, the system has three di-
mensions and it is invariant under reflection. This introduces
a factor of 6 into the proportionality in Eq. �6�.

Second, a particle as well as its neighbors are engaged in
equivalent random walks. This feature is introduced by al-
lowing for the possibility of two particles, starting out with a
gap Rc between them, walking �read “diffusing”� in such a
manner that they encounter each other after an interval �c
while each has diffused a rms distance Rc /2. With this one
possibility, for which we account in Eq. �6� with a factor 1

4 ,
we express statistically the effect of all possible binary en-
counters. Note, this elementary expression of cooperation,
the system’s mere predisposition to encounters, is indepen-
dent of the particle concentration.

Third, the symmetry of the walk is relaxed. Up to this
point forward and backward steps occur with equal probabil-
ity, so that the PDD is Gaussian. With this constraint re-
moved, and with the above modifications, Eq. �6� can be
written as

�x2���� =
6

4
H
 �

�c
�Rc

2, �7�

where

FIG. 1. Mean-squared displacement shown for �=0.48. The
dashed line shows the result, ��r2����=�, for an ideal dilute suspen-
sion. The left and right solid lines are ��r2����=Ds� and ��r2����
=Dl�. Left and right arrows indicate the points ��c ,Rc

2� and
��m,Rm

2 �, respectively.
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H = 4f�1 − f� �8�

measures the asymmetry, or bias, of the walk and f is the
probability of a forward step. At �m we have ��r2��m��=Rm

2 ,
and Eq. �7� becomes

Rm
2 =

6

4
H
 �m

�c
�Rc

2 �=
6

4
HDs�m	 , �9�

from which the parameter H is determined. In Sec. III it will
be shown that Ds=Rc

2 /�c within experimental error. Applica-
tion of this gives the second equality in Eq. �9�. The require-
ment that H approach unity at infinite dilution of the suspen-
sion will serve as a check on the heuristic argument above
that leads to the factor of 6 /4 in Eq. �7�.

As noted above, the predisposition of encounters is inde-
pendent of the suspension’s volume fraction. The increasing
probability of encounters with � is here accounted for by the
deviation of the bias factor, H, from unity. A consequence of
this bias is that, after � /�c steps, the random walker also
experiences a net displacement,

X��� = �1 − H
 �

�c
�Rc, �10�

causing the local symmetry of the walker’s displacement dis-
tribution to be broken. However, in the ensemble average,
every particle whose walk is biased in one direction is
complemented by another biased in the opposite direction.
That is, in the ensemble, both the ISF and the PDD are ro-
tationally invariant and, as evident from Eq. �2�, only the
even moments, or cumulants, survive. Now, as dictated by
conservation of probability, any reduction in the probability
incurred by the reduction of the MSD by the factor H, must
be compensated for by either an increase in the amplitude of
the PDD, and/or an increase in its higher order �non-
Gaussian� cumulants. Thus, unless the particles remain lo-
cally constrained by their neighbors, the random walk de-

scription posits that stretching of the MSD with delay time
and deviations from Gaussian emerge concomitantly.

Of course the visualization this proffers is just the “cage”
picture, first introduced by Frenkel �16� as a microscopic
underpinning of Maxwell’s theory of viscoelasticity. The
above allows this picture to be augmented as follows: While
confinement of a particle to its immediate neighbor cage can
be described statistically by a Gaussian, a particle’s escape
from its cage is a non-Gaussian process.

III. RESULTS AND DISCUSSION

The data used here derives from previously published
measurements of the self-ISF of hard-sphere colloidal fluids
�8,9,12�. Of the earliest of these measurements �12� complete
and detailed MSDs are no longer available but estimates of
Ds and Dl are. Accordingly, these diffusion coefficients will
be used to check the consistency of the inferences derived
from the analyses of the more recent, detailed measurements.

Figure 2 shows the delay times �c and �m and Fig. 3 the

FIG. 2. Various characteristic times versus volume fraction, read
directly from the MSD �“exp”� and those calculated from expres-
sions indicated. See text for explanations and definitions. The ver-
tical dashed lines indicate the freezing and glass transition volume
fractions, �f=0.494 and �g=0.565.

FIG. 3. Characteristic rms displacements versus volume frac-
tion. See text for further details.

FIG. 4. Short-time diffusion coefficient vs volume fraction.
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corresponding rms displacements, Rc and Rm. Note that �m,
the delay time where the MSD has its maximum stretching,
shows no systematic variation with � for the colloidal fluid
in thermodynamic equilibrium ����f�: here �log �m�0.6
�or ��m�4�. In the undercooled colloidal fluid ����f��m

increases, seemingly without limit as � approaches �g.
Figure 4 shows the short time diffusion coefficient, Ds,

and the ratio Rc
2 /�c. The agreement between these two quan-

tities supports the notion that particle movement can be ap-
proximated by diffusion for delay times up to �c. Of course
this is a statistical approximation of lowest order which ap-
plies, it appears, to both the equilibrated and undercooled
colloidal fluids. Aspects of the particle dynamics left unex-
posed by this approximation will be discussed in a future
publication.

The bias factor, H, calculated from the data with the first
equality in Eq. �9�, is shown in Fig. 5. As explained in the
opening paragraph of this section, this calculation is possible
only for the recent data contained in Refs. �8,9�. The ratio

Dl /Ds, of the long and short time self-diffusion coefficients,
is also shown for the larger body of data. The scatter of the
results gives an indication of experimental errors accumu-
lated in the quantities H and Dl /Ds. Systematic differences
between H and Dl /Ds become significant for volume frac-
tions near and, as shown more clearly in the semilogarithmic
presentation in Fig. 5�b�, above the freezing value.

Let us first consider the results for the colloidal fluid in
thermodynamic equilibrium ����f�. Figure 5�c� shows that
for this case there appear to be no systematic deviations from
the best fitting straight line to H versus � which is given by

H = 1 − 8�/5. �11�

Clearly, H��→0�=1, as required, and H��=�f�0.2 So at
�f, for example, our biased walk description indicates that a
particle executes �m/�c100 steps in the time interval �m, 5
of which are in one direction and 95 in the opposite
direction.

FIG. 5. The asymmetry, H, of the random
walk defined by Eq. �8� and the ratio, Dl /Ds, of
long- and short-time diffusion coefficients vs vol-
ume fraction. The linear least-squares fit to H vs
�, shown in �a� and �c�, is H=1−1.6�.

W. VAN MEGEN PHYSICAL REVIEW E 73, 011401 �2006�

011401-4



The long-time self-diffusion coefficient, Dl
�BD�, obtained

by Brownian dynamics computer simulation of hard spheres
�17� is also shown in Fig. 5�c�. In these simulations the par-
ticles execute random walks characterized by the diffusion
coefficient, D0, of an isolated particle in a unbounded liquid.
The stretching of the MSD and the concomitant reduction of
the long-time self-diffusion coefficient relative to D0, ob-
tained in these simulations, result from the exclusion of those
random trials that lead to particle overlaps. The agreement
between H and Dl

�DB�, seen in Fig. 5�c�, suggests H accounts
purely for excluded volume effects among the particles. That
is, the random walk of the present analysis has been biased
so as to just avoid encounters. In the deviation of Dl

�DB�, or
Dl /Ds, from unity, both Brownian dynamics simulation and
the random-walk model account for the magnitude of the
stretching as expressed in Eq. �9�; and, in view of the agree-
ment with experiment, they do so consistently. The differ-
ence is that the random-walk model contains no memory,
either implicitly or explicitly, and, therefore, contains no in-
formation about the crossover from short- to long-time dif-
fusion as expressed, for example, by the quantity ���� of Eq.
�5�.

The preceding along with the consistency between H and
the ratio, Dl /Ds, seen in Fig. 5�a�, supports the notion that
particle diffusion, in the long-time limit, can be considered in
terms of two statistically independent sources of interaction
among the particles, namely momentum exchanges mediated
by the suspending liquid and excluded volume effects. How-
ever, this inference applies only to the colloidal fluid in ther-
modynamic equilibrium and it cannot, on the basis of the
systematic and increasing difference between H and Dl /Ds
evident in Fig. 5�b�, be extended to the undercooled colloidal
fluid.

Given H �Fig. 5�, �m �Fig. 2�, and the equality, Ds
=Rc

2 /�c �Fig. 4�, allows several consistency checks of the
data.

�i� The statistical orthogonality of momentum and con-
figuration spaces can also be expressed by rewriting Eq. �9�
as

Dl =
4Rm

2

6�m
= HDs. �12�

Figure 6 shows the ratio of measured values of Dl and those
obtained from the product of H and Ds. The Markovian ap-
proximation is vindicated for volume fractions up to approxi-
mately 0.47, where this ratio is one. Variations of this ratio of
a factor 2 could possibly be accommodated by accumulated
experimental errors. However, close to �f and certainly for
���f the systematic decrease of Dl relative to HDs suggests
systematic failure of the random-walk description. In view of
this the following consistency checks are applied only to the
equilibrated colloidal fluid.

�ii� Figure 3 compares the values of Rm calculated by the
second equality of Eq. �9� with the results read directly from
the MSD. Note that Rm��→0��2.5 and appears to decrease
linearly with � to Rm��f��0.4.

As expected and borne out by the data, Ds→1, Dl→1,
and H→1 in the limit �→0, i.e., the coefficients that char-

acterize linear transport in the suspension approach the val-
ues expected at infinite dilution. It might also be expected
that all characteristic length and time scales diverge at infi-
nite dilution. But Eq. �12� indicates that Rm

2 /�m=6/4 in this
limit. In fact extrapolations of the data in Figs. 2 and 3 to
�=0 give results, �m4 and Rm2.5, consistent with the
ratio Rm

2 /�m=6/4. As discussed in Sec. II, the factor 6 /4
accounts for, dimensionality, reflection symmetry, and the
possibility of encounters. These aspects are independent of
volume fraction.

�iii� The ratio �m/�c expresses the number of encounters
or, in the present analysis, the number of steps in the interval
�m. Figure 2 shows this ratio when both �m and �c are read
directly from the MSD as illustrated in Fig. 1. Alternatively,
the ratio can be calculated from �m/�c=4Rc

2 /Ds �where use is
made of the results, �m=4 and Ds=Rc

2 /�c, found above�.
Agreement of the two estimates is apparent from Fig. 2.

An immediate consequence of bias in the random walk is
the emergence of a net displacement, Xm, given by Eq. �10�,
which, as discussed in Sec. II is manifested in the ensemble
by a non-Gaussian spread of the PDD in proportion to
Xm

2 ���2�. However, the ratio Xm/Rm, of this net displace-
ment and the rms displacement at �m, shown in Fig. 7, be-
comes much larger than that obtained so far from DLS mea-
surements �18�. Of course, one has to bear in mind again that
the random-walk model merely constitutes a lowest order
statistical description of the particles’ motions. This descrip-
tion is devoid of mechanism, in particular a mechanism, such
as the viscoelastic response of the suspending liquid to the
thermal forces, that might temper the non-Gaussian spread of
the PDD.

IV. SUMMARY AND CONCLUSIONS

In the Markovian approximation, commonly applied
when considering the dynamical properties of suspensions,
particles diffuse by the influence of white thermal noise from
one encounter to the next. From this perspective successive

FIG. 6. Ratio of the measured long-time diffusion coefficient,
Dl�exp� and the product, Dl�calc�=HDs, vs volume fraction. The
symbols are Ref. �12� �diamonds�, Ref. �8� �circles�, and Ref. �9�
�triangles�.
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encounters experienced by a particle are uncorrelated. Ac-
cordingly, a second random walk has been constructed from
diffusive steps of length commensurate with the average in-
terparticle spacing. This second random walk is then biased
so as to force the walker’s MSD through the point where the
experimental MSD has its greatest stretching. The two main
outcomes of this analysis are as follows.

First, the random-walk model is consistent with the data
while the colloidal fluid is in thermodynamic equilibrium. In
particular, the long-time self-diffusion coefficient can be ex-
pressed as a product of the short-time self-diffusion coeffi-
cient, the quantity that characterizes the influence of the sus-
pending liquid on the particle’s movement, and a bias factor
that accounts for excluded volume effects among the par-
ticles. In other words, diffusion in the long-time limit is con-
sistent with a statistical description based on the decoupling
the particles’ momentum and configuration spaces.

This consistency cannot, on the basis of the experimental
data, be extended to the undercooled colloidal fluid. Recall
that the data concerns suspensions of particles with hard-
sphere interactions. This being the case, all communication
between the particles is transmitted by momentum currents

in the suspending liquid. Consequently, the failure of the
random-walk model to provide a consistent description of
one of the basic transport coefficients implies that, irrespec-
tive of the degree of time coarse graining, some memory of
the momemtum current is retained, at least while the colloi-
dal fluid is undercooled. In this, as in previous work �9�, the
present analysis exposes a qualitative difference between a
colloidal fluid in thermodynamic equilibrium and one that is
undercooled.

Second, the random-walk analysis also points to an inex-
tricable connection between the stretching of the MSD and
non-Gaussianity: excluded volume effects among the par-
ticles lead to a leakage of probability from the second to
higher order �even� cumulants of the PDD. Moreover, this
non-Gaussian component grows quadratically with delay
time, whereas, asymptotically, the MSD grows linearly with
delay time. This suggests that, simply as a consequence of
excluded volume effects, non-Gaussian exploration of con-
figuration space is more efficient than Gaussian exploration.
This last inference is consistent with the limited experimen-
tal data currently available �18�.

Having vindicated the decoupling of the particles’ mo-
mentum and configuration spaces one expects that Brownian
dynamics computer simulation will faithfully reproduce the
stretching observed experimentally, at least for a colloidal
fluid of hard spheres in thermodynamic equilibrium. How-
ever, this assertion remains to be tested. By the same token,
we know from the idealized version of mode-coupling theory
�MCT� of the glass transition, for instance, that the configu-
ration space characterization of memory can describe quan-
titatively the complete time dependence of the stretching ob-
served in the MSD �19� as well as the coherent intermediate
scattering functions �7�. What remains to be understood is
why MCT is able to describe the experimental data so faith-
fully on both sides of the freezing volume fraction.
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